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Ionisation as a Hilbert boundary value problem 

J N Elgin 
Optics Section, Blackett Laboratory, Imperial College, I ondon SW7 2BZ, UK 

Received 6 April 1982, in final form 19 July 1982 

Abstract. The problem of single-photon ionisation of an atom is formulated as a Hilbert 
boundary value problem on a semi-infinite arc, and a solution is then presented. 

1. Introduction 

The problem of single-photon ionisation of an atom has been extensively studied over 
many years, and is now generally regarded as well understood. Normally, a solution 
to this problem is obtained in terms of time-dependent coefficients using eigenstates 
of the unperturbed system (Heitler 1954). We present here an alternative method of 
solution in which the decay (or ionisation) is envisaged as due to a spreading of an 
initially localised wave packet in the manner discussed by Khalfin (1958). Here, the 
coefficients are time independent, and the eigenstates are those of the complete 
atom-field coupled system. The qualitative difference in approach emphasises the 
physical mechanism of ionisation as due to an irreversible phase mixing of the 
eigenfunctions of the ‘dressed continuum’ system. 

Viewed thus, a close similarity is noted between the apparently disparate topics 
of single-photon ionisation, and collisionless Landau damping of an initial disturbance 
in an isotropic, homogeneous electron plasma (Landau 1946), where the latter decay 
also arises from a phase mixing of continuum modes of the system-that is, of the Van 
Kampen-Case (Van Kampen 1955, Case 1959) normal modes supported by the 
plasma. Moreover, the exponential decay law normally associated with the Weisskopf- 
Wigner theory of ionisation (Agarwal 1974), and with Landau damping, stems in each 
case from a zero of the appropriate dispersion function located on the unphysical 
sheet of the complex frequency plane. 

Our method utilises the formalism of pseudo-Fano autoionising states (Fano 1961, 
Beers and Armstrong 1975, Geller and Popov 1976), which are currently receiving 
much attention in connection with higher-order nonlinear processes involving multi- 
photon transitions into an atomic continuum (Armstrong et ul 1975, Coleman and 
Knight 1982, Rzazewski and Eberly 1981, Coleman et a1 1982); the application 
considered here constitutes the simplest (i.e. lowest order) non-perturbative applica- 
tion of such a formalism. The problem is then cast into the general form of a Hilbert 
boundary value problem on a semi-infinite arc (Muskhelishvili 1953), and techniques 
peculiar to this type of problem are used to obtain a solution. 

The main purpose of this article is to demonstrate that the general Hilbert technique 
has a ready application in the study of the single-photon ionisation problem, and 
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hence by extension may have a similarly useful application in the study of the 
higher-order processes mentioned above. Loosely speaking (see appendix for a more 
detailed discussion), the Hilbert technique is concerned with the branch-cut properties 
of a certain class of function. A branch cut in an appropriate dispersion function is 
a mathematical manifestation of the fact that the system in question can support a 
continuum of normal modes. Consequently, the Hilbert method would appear to be 
a most natural way to study problems where decay in a system results as a consequence 
of phase mixing of continuum modes. 

For readers not acquainted with the Hilbert technique, an appendix is included in 
which the salient features of the technique are discussed; a complete discussion of 
the method is given in the standard text by Muskhelishvili (1953). In § 2, the problem 
is formulated as a Hilbert problem, and in 0 3 a solution is presented. 

2. Formulation as a Hilbert problem 

2.1. Pseudo-Fano states 

The coupling of a bound state with an overlapping continuum of states results in a 
non-trivial modification of the latter's structure. We briefly review the technique used 
by Fano (1961) in his original treatment of this problem. 

Consider an atomic discrete state 14) which overlaps and is coupled to a continuum 
of states I&). The states 14) and I @ E )  are zeroth-order approximation eigenstates of 
the atomic Hamiltonian HA. With respect to these states, the matrix elements of HA 
are taken as 

where VEr represents the coupling of the bound state to the continuum through 
configuration interaction, and S is the Dirac S function. The wavefunction which 
diagonalises H A  and has energy E is taken in the form 

where the lower limit of the integral (zero) coincides with the beginning of the 
continuum, which then extends to infinity. Fano constructed eigenvalue problems for 
the coefficients a ( E )  and bEn(E),  and showed that these were related by 

with 
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and P denotes ‘principal part of’. By imposing S-function normalisation on the states 
I%), 

(qE/vTE’)  = s ( E  -E’). (4) 

Fano solved for the unknown a ( E )  

Clearly, the Fano technique can also be applied to the case where the perturbation 
VE, describes coupling of a bound state to a continuum through an externally applied 
field rather than by configuration interaction (Armstrong et a1 1975, Geller and Popov 
1976). The unperturbated bound and continuum states then have the form In ; 4), 
In - 1; ( L E ) ,  where the first entry refers to the number of photons in the external (or 
applied) field mode. Here, the atomic states 14 j and /GE) are initially non-degenerate, 
but application of the external field couples these to produce the degenerate system 
considered above. Note that the eigenfunction I\IIE) (equation (2)) now refers to the 
dressed-atom-field system and, as before, has real eigenvalues since the system is 
self-adjoint. 

If the atomic state Id) is not initially occupied, the continuum structure induced 
by the above coupling can be probed using a second laser to induce transitions from 
the initially occupied state (for example, the ground state) into the structured con- 
tinuum; in this way, the usual Fano profile is recovered. Here, we wish to address 
the case where the state 14) is initially occupied, in which case ionisation results as a 
consequence of the interference of the diagonalised eigenstates 

2.2. Formulation as a Hilbert problem 

The state of the system at any time ‘ t ’  may be written as a linear sum (or integral) 
over its eigenstates I*€): 

Here cE is a time-independent quantity, and 1qE) is given by equations (2) and (3), 
in which 14) and I ( L E )  are replaced by In ; 4)  and In - 1; $ E )  respectively, as discussed 
earlier. The initial conditions are taken to be such that at time t = 0 ,  the state 
I@(t = 0)) = In ;  4); that is, the atom is in its ground state. Note that equation (6) 
emphasises the point made in the introduction, that subsequent ionisation of the atom 
is a consequence of the irreversible phase mixing of the eigenfunctions \YE).  The 
unknown coefficients cE are therefore to be determined from the integral equations 

Since the continuum states ITE) form a complete set, a solution for the unknown cE 
is obtained immediately on taking the inner product of equation (7) with (VEi,  to give 
cE = a*@). However, as stated in the introduction, the main object of the present 
article is not so much to obtain a solution, as to discuss the application of the Hilbert 
technique to this type of problem; we therefore proceed as follows: taking the inner 
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product of equation (7) with ( 4 ;  nl and (4€, n - 11 respectively, and using equation 
(2), produces 

e x  ] c E a ( E ) d E = l  
0 

Inm ~ ~ 6 d E )  d E  = 0. 

We now solve the second of these for the unknown cE as follows. 
Substituting for bFt(E) from equation (3) produces 

X 

d E  = -Z(E')a(E ' )cE E-E' (9) 

where, as before, P denotes 'principal part of'. Now define the sectionally holomorphic 
function (Muskhelishvili 1953) 

so that 

@ + ( U ) -  8 - w )  = ~ ( E ) c ~ .  (116) 
Here, 8* denote the limits of the function 8 as (complex) U approaches the positive 
real axis from above (i.e. from Im U > 0) and below (Im U < 0) respectively. Note 
that @ ( U )  is sectionally holomorphic throughout the complex U plane, with a single 
branch cut which runs along the positive Re U axis. Substituting (1 1) into (9) produces 

Equation 112) is in the standard form of a Hilbert boundary value problem on a 
semi-infinite arc which is to be solved for the unknown O(E). As such, a formal 
solution could be written down immediately by using the method of solution outlined 
in the appendix. However, the particular form of the function G I E ~  above permits 
a solution to be obtained by inspection; this simpler procedure is pursued in the next 
section, and a discussion of the formal solution of equation (12) is deferred until the 
appendix. 

3. Solution of the Hilbert problem 

Using equation ( 3 6 ) ,  it is readily shown that 

G ( E )  =D-(E) /D ' (E)  (13) 
where D*(E)  are the respective limits in the sense defined above of the dispersion 
function 
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Note that the integral here is not simply 'principal part of', as was the case in the 
definition of the quantity Z ( E ) .  The Hilbert problem (12) then becomes 

O+(E)D'(E) = K(E)D-(E) O s E < o o .  (15) 

The functions @(E) and D ( E )  are both, from their respective definitions, holomorphic 
in the cut plane with a single branch cut running along the positive Re E axis. From 
equation (15), it then follows that the product function O(E)D(E) is entire in the 
whole of the complex E plane including the positive Re E axis. Moreover, as IEl+ CO, 

it follows from equations (14) and (lo), together with the first of equations (8), that 
OD-, -1/2vi ,  and by Liouville's theorem, must equal this same constant value 
throughout the complex E plane. The unknown function @(E) is then obtained as 

-1 
2xiD(E)  

O(E) = 

and, from equation (1 1 b ) ,  the required cE is 

-1 
2 v i a ( E )  is-+) CE = 

=a*(E) .  

To complete the formal solution of the problem, we now prove that the above 
form for cE is consistent with the first of the integral equations (8). That is, it is 
required to show that 

More correctly, it is required to show that 

where 0' denotes the limit as f + 0 from above. Recalling the definitions of the 
functions D*(E),  equation (19) can be written in the equivalent form 

where C is the contour which runs around the branch cut of D ( E ) ,  as shown in figure 1. 
Moreover, since D(E) is regular throughout the cut plane, and vanishes as IEl at 
infinity, it is permissible, for t > 0, to open up the contour C to give 

dE m 

lim exp(-iEr/h) -- 
t-o+ I, 

on the understanding that the contour now passes above the cut on the positive real 
axis. Equivalently, we may analytically continue the cut away from the positive real 
E axis by tilting it through an infinitesimal angle in a clockwise sense, and then bring 
the contour of integration down to lie along the entire real E axis; this is the sense 
in which equation (18c) is now understood to be defined. 
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,4 _____ c 
c Re E 

Figure 1. Contour C appearing in equation (18). The bold line denotes the branch cut 
of the function D ( E ) .  

Defining 

d E  

we are required to prove that f(t -+ 0') = +1. This is easily done by Fourier inverting, 
and using the fact that D ( E )  is regular in the upper half of the complex E plane 
including the real E axis, so that f ( t )  = 0 for f < 0. Then, 

1 ; r" 

Expanding both sides as power series in E-", taking the limit /El + 00 and comparing 
coefficients of E-' produces the desired result. This completes the formal solution 
to the problem. 

4. Conciuding remarks 

The quantity f ( t )  defined in equation (19) is the probability amplitude that the atom 
will be found in its ground state at any time r 3 0. It is seen that this depends intimately 
on the analytic properties of the dispersion function D(E) .  Recall that D has a branch 
cut running along the positive real E axis, and is nowhere zero on the physical sheet 
of the complex energy plane. However, D ( E )  does have a zero lying just below the 
positive real axis on the unphysical sheet of the complex E plane, which may be 
exposed by the standard method of analytic continuation from the upper half-plane. 
Deforming the branch cut analytically in this manner (see figure 2), the exposed pole 
of the function D-' is recognised as that which gives rise to the Weisskopf-Wigner 
theory of ionisation-that is, to the well known exponential decay law. The remaining 
branch-cut contribution represents deviation from this exponential decay law (e.g. 
Zakowicz and Rzazewski 1974, Mostowski and Wodkiewicz 1973), 

The fact that the dispersion function D ( E )  has a branch cut, and no other zeros 
or singularities, is a mathematical manifestation of the fact that the system supports 
a continuum of normal modes (or eigenstates), but no bound states. Decay is then a 
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Figure 2. Exposed Weisskopf-Wigner pole on the unphysical sheet of the complex E 
plane; see text for details. 

consequence of irreversible phase mixing of these modes. We have explored here the 
connection between the analytic properties of D ( E )  and the decay mechanism, and 
have demonstrated that a useful mathematical technique-that based on the study of 
Hilbert boundary value problems-has ready application to this type of problem. It 
is believed that the general technique will also find useful application in the study of 
the higher-order processes alluded to in the introduction. 
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Appendix 

We present here a brief outline of the Hilbert boundary value problem; for a complete 
discussion the interested reader is referred to the standard text by Muskhelishvili 
(1953). 

In its simplest form, the Hilbert problem may be stated thus: it is required to find 
the function @(Z) which satisfies the boundary condition 

on the contour L, where G ( Z )  and g ( Z )  are known functions. The superscripts * 
on @(Z) denote the two limits of this function as Z approaches L from above and 
below respectively (cf figure 3). The functions G ( Z )  and g ( Z )  are required to satisfy 
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+ region / 

- r e g i o n  

Figure 3. Open (a )  and closed ( 6 )  contours; see text for details 

a Holder condition on L ;  that is, if 21 and 2 2  are two points on L,  then 

IG ( 2 2 )  - G VI)/ A I 2 2  -211~ (A.2) 

where A and p are positive constants, and 0 < p s 1. When p = 1 the Holder condition 
becomes the Lipschitz condition. 

When g ( 2 )  is identically zero, equation (A . l )  is a statement of the homogeneous 
Hilbert problem; when g ( 2 )  f 0, it is generalised to the inhomogeneous problem. 

It is also necessary to distinguish between 'open' contours, as in figure 3(a), and 
'closed' contours, where 'A' and 'B' meet and in addition the first derivatives of the 
functions G and g change continuously on passing through the point of contact 
(figure 3(b)). It will be seen from the statements above that the ionisation problem 
considered in the main text (cf equation (12)) can be cast as a homogeneous Hilbert 
problem on an open arc (the positive real energy axis). 

Properties of the inhomogeneous problem will not be considered here. The 
homogeneous problem on a closed arc can be solved by first taking the logarithm 
of both sides of equation (A.l) ,  

In @+(Z) -In C(2) = In G ( 2 )  Z € L  (A.3) 

then comparing with the Plemelj formula 

In the limit 2 E L, equation (A.4) can be written as 

where W*(Z)  are the two limiting forms of the function "(2) in the sense defined 
above, and P is 'principal part of'. Subtracting the two equations in (A.5) and 
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comparing with (A.4) gives the required result: 

=X(Z) ,  say. 
(A.6) 

This method of obtaining the solution is valid provided the quantity ln(G(Z))  is single 
valued in the '+' and '-' regions, in which case ln(@(Z)) is also single valued. The 
particular solution @(Z) =X(Z) is referred to as the fundamental solution by Mus- 
khelishvili. It is not difficult to see that a more general solution to this same problem 
is 

@(Z) = P ( Z ) X ( Z )  (A.7) 

where p ( 2 )  is an arbitrary polynomial, chosen to give @ a specified asymptotic 
behaviour. 

The above technique needs to be modified slightly when considering the 
homogeneous Hilbert problem on an open arc, as follows. Assume, as before, that 
the function @(Z) is continuous on L from above and below, with the possible exception 
of the end-points A and B (figure 3(a I), but near these end-points, it is required to satisfy 

with A and (Y real constants and (Y < 1. Such functions are called sectionally holomor- 
phic functions, with the line of discontinuity coincident with L as before. Clearly, a 
solution for @(Z) for the homogeneous problem on an open arc will again be given 
by equation (A.6), as can be verified by direct substitution into equation (A.1) (with 
g ( Z )  = 0). However, it remains to show that this particular solution also satisfies 
equation (A.8); if not, then the solution must be suitably amended to find a form 
which does. Defining 

a study of the function exp(r(Z))  in the vicinity of either of the end-points A and B 
reveals that it takes the form (Muskhelishvili 1953, 5 79) 

exp(r(Z))  = ( Z  -Ck)uk+i'kR(Z) (A.10) 
where (Yk and P k  are real constants given by 

(Yk +$k = hl(G(Ck))/27ri (A. 11) 

(upper sign for ck = a, lower for ck = 6 ) ,  and n(Z) is a non-vanishing bounded function 
which assumes a definite value at the points ck. Now select integers hk satisfying the 
condition 

(A.12) 

n(2) = (Z - a)^ ' (Z  - b)*2, (A. 13) 
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Then, the function 

X ( 2 )  = n(2) exp T ( 2 )  (A. 14) 

obviously satisfies all the conditions of the problem and is therefore a particular 
solution of the homogeneous problem on the open arc L. The ends c k  for which Lyk 

is an integer4.e .  for which G(ck)  is a real positive quantity-are called special ends. 
We conclude this appendix by presenting a formal solution of the Hilbert problem 

represented by equation (12) in the main text. As stated earlier, this is identified as 
a homogeneous Hilbert problem on an open arc, the latter being the real positive 
energy axis. The function D-(E)/D’(E) satisfies the Holder condition on the semi- 

S infinite arc; hence, using the method presented above, a particular solution 

e(Ej=E* exp(& Jmln(-)-) D-(E’) dE’  
T I  0 D (E)  E - E  

where D’(E) are the plus and minus parts of the dispersion function D(E 
equation (14). Also, from equation (A. 1 l ) ,  we have 

(A.15) 

given by 

(A.16) 

which implies that a = 1, p = 0, and hence from equation (A.12), that A = -1. Note 
that E = 0 is a special end, in the sense defined above. The above finding is conditional 
on the assumption that the principal part of the integral appearing in equation (14) 
converges in the limit E ’0, and that its value is less than E,; we assume this to be 
the case without further comment here. Defining d(E) = D(E) /E,  and noting-from 
inspection of the analytic properties of the function D (E)-that the integral in equation 
(A.15) can be written as an equivalent integral of the function ln( l /d(E))  around the 
contour ‘C’ shown in figure 1, the asymptotic behaviour of the In function then permits 
this contour to be opened up capturing the single pole at E’ = E, giving 

1 -1 1 
8(E) = - exp - 27ri In d ( E )  = ~- 

E \ 2 r 1  1 D E )  
(A.17) 

as found previously. The particular solution (A.17) is generalised by multiplying by 
an arbitrary polynomial, as in equation (A.7), whose form is deduced by considering 
the behaviour of the respective functions at infinity; in this way, the result shown in 
equation (16) in the text is obtained again. 
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